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ABSTRACT

This project involved a comprehensive study of concepts related to the synchronization of

dynamical systems. It also included simulations of different non-linear systems and extensive

study of the synchronization behaviour as seen in the Kuramoto Model for ’n’ weakly coupled

oscillators.

It then focussed on a variation of the Kuramoto model with a finite number of oscillators

and the study of the behaviour of systems governed by those equations. Using mathematical

analysis,fixed points, corresponding to different parameters in the same model, were searched

for and found, along with the occurence of some interesting bifurcations.
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Synchronization and Collective Dynamics of Non-Linear Systems

Chapter 1

Introduction

1.1 Synchronization

Synchronization is a phenomenon observed in an ensemble of oscillatory systems. It is

common in biological systems : Male fireflies of Photinus carolinus species synchronize their

flickering such that a group of fireflies will light up at and go off at the same time.[1] It has

also been observed that, female members of some species who spend ample amount of time

together tend to menstruate at the same time. At microscopic levels, cardiac cells and neurons

exhibit synchronization. Synchronization of certain neurons leads to epilepsy, and it has been

shown that it is also linked to Parkinson’s disease. These systems are essentially oscillators of

some form linked together by some mechanism. In light of this, study of synchronization is an

area of active research not just for biologists but also for physicists and mathematicians who

wish to model the oscillators in such a way that they synchronize.

One such model for coupled oscillators is the Kuramoto model [2], in our project we used

the Kuramoto model of oscillators to study the conditions for which synchronization occurs.

First, we give a brief explanation of the concepts involved in nonlinear oscillators, their

response to external stimuli and finally how an ensemble of oscillators behaves.
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1.2 Oscillator Concepts

1.2.1 Phase of Oscillation

Oscillators can generally be described by a single parameter, say for a Simple Harmonic

Oscillator the parameter is time. Similarly the trajectories of oscillators in phase space can

be described by parameters. Due to the periodicity the parameter is bounded between [0,T]

where T is the period after which oscillation repeats itself.

1.2.2 Limit Cycles

Limit cycles are isolated periodic trajectories in the phase space. A system which has a

stable limit cycle behaves like an oscillator on the limit cycle trajectory, and around it.

1.2.3 Isochrons

Consider a system which is spiralling on to a limit cycle, it will reach the limit cycle at

t→∞. However the phase of oscillation can be defined even when the system is not exactly on

the limit cycle, say the initial point is y(t), it eventually reaches a point x(t) on the limit cycle

as t → ∞. Thus, each point on the trajectory can be mapped to a point on the limit cycle.

This relation is many-one, i.e multiple y’s can map to a single x. So for a particular x(t1) there

exist multiple y(t1), these are said to be in the same phase as x i.e t1. In this manner each

point in the phase plane can be assigned a phase.

Now, we join all the points which have the same phase by a smooth curve, this curve is

called the isochron.

Department of Physics, BITS Pilani K.K. Birla Goa Campus, Goa 2



Synchronization and Collective Dynamics of Non-Linear Systems

Figure 1.1: Top: An isochron, or a stable manifold, of a point x0 on the limit cycle attractor.
Bottom: Isochrons of a limit cycle attractor corresponding to 40 evenly distributed phases nT/40, n =
1, ..., 40. Reproduced from (Izhikevich 2007, Chapter 10)[3]

1.2.4 Phase Response Curves (PRCs)

When an oscillator is subjected to external stimuli in the form of discrete kicks, the phase

goes into a transient state and then stabilizes to phase that is different from the originally

expected phase (in the absence of kicks).

Figure 1.2: Phsae Response Curves. Reproduced from (Izhikevich 2007, Chapter 10)[3]

This change in phase depends on the form of kick and the time or phase at which the

kick was applied. A Phase Response Curve is a function defined by tnew − told for each told.

PRC(t0) = t− t0
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Moving to the phase plane, a kick can be seen as a discrete change in one of the state

while holding the other one constant, which also implies shifting from one Isochron to another

thus leading to a change in phase.

1.3 Synchronization Concepts

1.3.1 Weakly coupled oscillator

ẋ = f(x) + ε ∗ p(t)

The above is the equation for an oscillator which experiences an external forcing which is

captured by ε∗p(t). The function p(t) depends on the manner of coupling with other oscillators

in the system. ‘ε’ is the magnitude of the external pulse and is small for weak coupling. Now if

ε → 0 then ẋ = f(x), which is just the equation for a self sustained oscillator whose equation

can be converted into a parametric equation with time as its phase.

q̇ = 1

That is, the frequency has been taken as unity.

To get a similar equation for a forced oscillator Arthur Winfree, Yoshiki Kuramoto and

Ioel Malkin independently developed three methods of the same name respectively.

1.3.2 Winfree’s Approach [4]

Consider a well magnified neighborhood around a point on the phase plane, the isochrons

passing through that point will be parallel to the isochrons that have a small phase difference.

Figure 1.3: Magnified view of Isochrons. Reproduced from (Izhikevich 2007, Chapter 10)[3]

From the figure it is clear that the phase resetting is linear, that is the change in the

phase is directly proportional to the magnitude of the kick or ‘e’ in this case. Therefore the

PRC(q, A) is a product of A and some function of phase to ensure linearity w.r.t A.
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PRC(q, A) = Z(q) ∗ A

We know that

qnew = qold + PRC(qold).

Instead of using a continuous function p(t), it can approximated by a discrete function p(tn)

which excites by an amount ε ∗ p(tn) ∗ h for an interval h, after which the next pulse arrives.

h = tn+1 − tn

q(tn+1) = q(tn) + PRC(qold, A) + h

q(tn+1) = q(tn) + Z(q(tn)) ∗ ε ∗ p(tn) ∗ h+ h

Rearranging,

q(tn+1)− q(tn)

h
= Z(q(tn)) ∗ ε ∗ p(tn) + 1

where the LHS is the discrete version of the derivative of q.

q̇ = 1 + ε ∗ p(t) ∗ Z(q(t))

Y. Kuramoto also derived the same equation using a different approach, using gradient

of the vector field etc.

1.3.3 Phase Model for Coupled Oscillators [3]

We consider a model for an ensemble of coupled oscillators

ẋi = fi(xi) + ε
∑
i,j

gij(xi, xj)

Using Winfree’s Approach we get

θ̇ = 1 + εQi(θi)
∑
i,j

gij(xi, xj)

The equation can be integrated to write :

θi = t+ ϕi

where ϕ̇ = εQi(t+ ϕi)
∑

i,j gij(xi(t+ ϕi), xj(t+ ϕi))

The classical averaging theory described in Hoppensteadt and Izhikevich (1997) [5] is
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used to transform the system into :

ϕ̇ = εωi + ε
∑
i 6=j

Hij(ϕj − ϕi)

Hij(ϕj − ϕi) =
1

T

T∫
0

Qi(t) · gij(xi(t), xj(t+ ϕj − ϕi))dt

Y. Kuramoto approximated the H function using the first term of Fourier Sine series and

introduced a new parameter for scaling time, τ = εt. This equation is called the Kuramoto

Phase Model [2].

ψ′ = ωi +
∑
i 6=j

cijsin(ϕj − ϕi + ψij)

The constants cij are taken to be K/n, coupling constant divided by number of oscillators. The

constant phase ψij can be taken to be zero to simplify the model further. We used this model

to simulate oscillators on MATLAB and its results are summarised in the following section.
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Chapter 2

Results

Using the final Kuramoto model for oscillators we did simulations on Matlab for an arbitrary

number of coupled oscillators.

2.1 Simulation 1 :

For any prescribed number of oscillators, the time evolution of the system of ODEs was

calculated using the Euler Method and phase difference of jth oscillator with the 1st oscillator

was plotted as a function of time. The parameters that could be varied were the coupling

constant and the frequency of each oscillator. A random function was used to provide initial

states as well as the frequencies.

We observed that for a given set of frequencies, the oscillators sync after a critical value

of the coupling constant, k.

Figure 2.1: Plot of phase differences of 3 oscillators with time for k = 0.5. Note that the system is not
in sync
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Figure 2.2: Plot of phase differences of 3 oscillators with time for k =1. The system shows synchro-
nization

2.2 Simulation 2 :

For a better understanding the dynamics of the system and stability of fixed points of the

system we wrote a code for plotting the nullclines for a system of 3 oscillators i.e for a system

of 2 ODEs. The frequencies of the oscillators were kept fixed at 1, 2 and 3 while the coupling

constant was changed.

We observed that for small values of ‘k’ the nullclines were closed loops and there were

several of them in the phase plane repeating after intervals of 2π . So we confined our phase

plane to −2π to 2π and it was observed that one of the nullclines starts expanding as the value

of ‘k’ was increased and eventually the 2 loops of the same nullcline combine and branch out

into 2 branches while the nullcline of the other equation follows the same suite but for even

larger values of ‘k’. Now this transformation of nullclines led to creation of several new fixed

points which were unstable.

One of the bifurcations observed was a very peculiar one, it involved creation of an un-

stable fixed point at a critical value of ‘k’ after which it separates into 2 unstable fixed points.

This bifurcation doesn’t fall into any standard categorie of bifurcations. The fixed points thus

created were cross checked from the ones obtained from the Newton-Raphson code and their

stability was verified using Simulation 1. Another bifurcation was similar to a pitchfork, one

unstable fixed point gave way to 3 unstable fixed points.

The list of critical values of k for which bifurcations occur are given in Appendix E.

The code was modified to create vector plot on the phase plane. We couldn’t find any

possibility of limit cycles. The frequencies of the oscillators were made unity to check the

Department of Physics, BITS Pilani K.K. Birla Goa Campus, Goa 8
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symmetry in the phase plane, and its variation with coupling constant. It was observed that

there are 4 fixed points, of which one is stable (0,0), and the phase plane remains so for all

values of coupling constant.

For a negative value of coupling constant, and all frequencies equal to unity the fixed

points simply changed their stability.

The following are the results obtained from the simulations.

Figure 2.3: Nullclines and vector plot for a system of three oscillators with k = 0.5
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Figure 2.4: Two fixed points are seen for k = 0.9

Figure 2.5: k = 1
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Figure 2.6: The unstable fixed point bifurcates into 3 unstable points for k = 1.25

Figure 2.7: k = 1.4
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Figure 2.8: A new fixed point is about to emerge at approx. (4,1) for k = 2.7

Figure 2.9: The newly created fixed point gives rise to two unstable points for k = 2.72
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Figure 2.10: k = 0.5, all frequencies are equal. The phase plane does not show any variation with k as
expected

2.3 Simulation 3 :

To find the stable and unstable states or fixed points of the synchronized oscillators the

system of ODEs has to be solved simultaneously as, the Euler method can only provide the

stable states of the oscillators.

The system of n-equations was reduced to system of n− 1 equations by subtracting the

phase of 1st oscillator from the remaining n− 1 oscillators

This system of n − 1 equations was then solved using the Newton-Raphson Method.

The program was reinitialized for different initial guesses and multiple roots were observed for

suitable values of the coupling constant, k. Some of these roots corresponded with the values

of phase differences seen in Simulation 1 after synchronization was achieved.
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Chapter 3

Conclusion and Future Scope

3.1 Conclusion

In conclusion we simulated the Kuramoto model for several oscillators, and later for 3 coupled

oscillators we found the conditions on the coupling parameter for which sync is achieved and

we also found a very peculiar bifurcation, which we couldn’t find in any standard texts of

Nonlinear Dynamics.

3.2 Future Scope

The bifurcation observed here needs to studied further and a robust mathematical descrip-

tion for the same is necessary.

Our study was restricted to the set of frequencies [1, 2, 3] and [1, 1, 1] for three oscillators

and the behaviour for other frequencies needs to studied
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Appendix A

Simulation 1

Kuramoto model.m

1 c l e a r ;

2 h=0.01;

3 t=0:h : 5 0 ;

4 prompt=’Number o f osc : ’ ;

5 %n=input ( prompt ) ;

6 n=3;

7 c=3;

8 %c=input ( prompt ) ;

9 C=c/n ; %coup l ing constant

10 %%%%%%%%%

11 C=4.5;

12

13 f o r ( i =1:n)

14 X( i , 1 )=normrnd ( 3 . 1 4 , 1 ) ;

15 V( i , 1 )=normrnd ( 3 , 1 . 2 ) ;

16 end

17 C=1;

18 %X=[0 ; 4 . 0 1 1 ; 1 . 7 3 8 ] ;

19 V=[1; 2 ; 3 ] ;

20

21 f o r i =1:( l ength ( t )−1)
22 k=osc (n ,C,V,X( : , i ) ) ;

23 X( : , i +1)=X( : , i )+k∗h ;

24 end

25

26 f o r i =1:n

27 Y( i , : )=X( i , : )−X( 1 , : ) ;

28 end

29 Z=mod(Y,2∗ pi ) ;
30 Z ( : , l ength ( t ) )

31 p lo t ( t ,Y) ;

32

33 di sp ( ’End va lues ’ ) ;

34 Z ( : , l ength ( t ) )

code/Kuramoto model.m
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Appendix B

Simulation 2

Kuramoto nullcline.m

1 h=0.01;

2 t=0:h : 2 0 ;

3 %phi=[a ; b ; c ] ;

4 v=[1; 2 ; 3 ] ;

5 k=3;

6 %k=2.709954

7 %ps i =[ phi ( 2 , 1 )−phi (1 , 1 ) ; phi ( 3 , 1 )−phi (1 , 1 ) ] ;

8 %w=[v (2 , 1 )−v (1 , 1 ) ; v (3 , 1 )−v (2 , 1 ) ] ;

9 l im i t 1 =0;

10 l im i t 2=2∗pi ;
11 %fo r ( i =1: l ength ( t )−1)
12

13 f=@( psi21 , ps i 31 ) v (2 )−v (1 ) +k∗(−2∗ s i n ( ps i21 ) − s i n ( ps i31 ) + s i n ( ps i31−ps i21 ) ) ;

14 g=@( psi21 , p s i 31 ) v (3 )−v (1 ) +k∗(−2∗ s i n ( ps i31 ) − s i n ( ps i21 ) + s i n ( ps i21−ps i31 ) ) ;

15 %blue : ps i21dot=0

16 f i g u r e

17 f i m p l i c i t ( f , ’− ’ , [ l im i t 1 l im i t 2 l im i t 1 l im i t 2 ] ) ;

18 %t i t l e ( ’ Combine Plots ’ )

19 hold on

20 f i m p l i c i t ( g , [ l im i t 1 l im i t 2 l im i t 1 l im i t 2 ] ) ;

21 %plo t (x , y2 )

22 %{
23 x21 =0:0 .05 :2∗ pi ;
24 x31 =0:0 .05 :2∗ pi ;
25 f o r i=x21

26 f o r j=x31

27 i f ( f ( i , j )<(10ˆ−50) && g ( i , j )<(10ˆ−50) )
28 di sp (” Fixed po int : ”) ;

29 di sp ( i ) ;

30 di sp ( j ) ;

31 %e l s e

32 %disp ( ’ Not found ’ ) ;

33 end

34 end

35 end

36 %}

code/Kuramoto nullcline.m

Kuramoto vector plot.m

1 c l e a r a l l ;

2 h=0.25;

3 t=0:h : 2 0 ;

4 %phi=[a ; b ; c ] ;
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5 dps i31 =[1; 2 ; 3 ] ;

6 k=0.8;

7 %ps i =[ phi ( 2 , 1 )−phi (1 , 1 ) ; phi ( 3 , 1 )−phi (1 , 1 ) ] ;

8 %w=[v (2 , 1 )−v (1 , 1 ) ; v (3 , 1 )−v (2 , 1 ) ] ;

9 l im i t 1 =0;

10 l im i t 2=2∗pi ;
11

12 f=@( psi21 , ps i 31 ) dps i31 (2 )−dps i31 (1 ) +k∗(−2∗ s i n ( ps i21 ) − s i n ( ps i31 ) + s i n ( ps i31−ps i21 ) ) ;

13 g=@( psi21 , p s i 31 ) dps i31 (3 )−dps i31 (1 ) +k∗(−2∗ s i n ( ps i31 ) − s i n ( ps i21 ) + s i n ( ps i21−ps i31 ) ) ;

14

15 %{
16 f o r i =1: l ength (X)

17 f o r j =1: l ength (X)

18 dps i21 ( i , j )=f (X(1 , i ) ,X(2 , j ) ) ;

19 dps i31 ( i , j )=g (X(1 , i ) ,X(2 , j ) ) ;

20 end

21 end

22 %}
23

24 [ ps i21 , p s i 31 ] = meshgrid ( l im i t 1 : h : l im i t2 , l im i t 1 : h : l im i t 2 ) ;

25 dps i21 = f ( ps i21 , ps i 31 ) ;

26 dps i31 = g ( ps i21 , p s i31 ) ;

27 s c a l e =1;

28 f i g u r e

29 f i m p l i c i t ( f , ’− ’ , [ l im i t 1 l im i t 2 l im i t 1 l im i t 2 ] ) ;

30 hold on

31 f i m p l i c i t ( g , [ l im i t 1 l im i t 2 l im i t 1 l im i t 2 ] ) ;

32 hold on

33 qu iver ( ps i21 , ps i31 , dpsi21 , dpsi31 , s ca l e , ’magenta ’ ) ;

code/Kuramoto vector plot.m
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Appendix C

Simulation 3

J.m

1 f unc t i on [ J ] = J (˜ )

2 %JACOB computes the Jacobian matrix at x

3

4 g l oba l N;

5 g l oba l K;

6 g l oba l p s i ;

7

8 J= ze ro s (N−1,N−1) ;
9 f o r i =2:N

10 f o r k=2:N

11 J ( i −1,k−1) = (K/N) ∗( cos ( p s i (k , 1 )−p s i ( i , 1 ) )−cos ( p s i (k , 1 ) ) ) ;

12

13 end

14 end

15 f o r i =2:N

16 J ( i −1, i −1) = (K/N) ;

17 f o r k=1:N

18 J ( i −1, i −1) = J ( i −1, i −1) − (K/N) ∗( cos ( p s i (k , 1 )−p s i ( i , 1 ) ) ) ;

19 end

20 end

21 end

code/J.m

F.m

1 f unc t i on [ f ] = F(˜)

2 %MFUN ca l c u l a t e s and re tu rn s the negat ive o f the ’ f unc t i on vector ’

3 %evaluated at x

4

5 g l oba l N;

6 g l oba l Omega ;

7 g l oba l K;

8 g l oba l p s i ;

9

10 f= ze ro s (N−1 ,1) ;

11

12 f o r i =2:N

13 f ( i −1 ,1) = (Omega( i , 1 )−Omega(1 , 1 ) ) ;

14 f o r j =1:N

15 f ( i −1 ,1) = f ( i −1 ,1)+ (K/N) ∗( s i n ( p s i ( j , 1 )−p s i ( i , 1 ) )−s i n ( p s i ( j , 1 ) ) ) ;

16 end

17 end

18 end

code/F.m
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NR Multi.m

1 % Function f o r f i nd i n g root in mult id imens iona l case us ing Newton−Raphson

2 % method . The code should work when the i n i t i a l guess i s c l o s e to one o f

3 % the roo t s .

4 f unc t i on [ Root , Count ] = NR Multi ( X i n i t i a l , Tol , Fun , Jacob )

5

6 Error = 10∗Tol ; %I n i t i a l i z i n g Error v a r i a b l e to be l a r g e r than Tol

7 Count = 0 ;

8 %I n i t i a l i z i n g the Count va r i ab l e

9 %de l t a = 100 ;

10 %Count max = 200 ; %Maximum value o f Count beyond which search i s terminated

11 g l oba l p s i ;

12 g l oba l N;

13

14 whi le Error > Tol

15 Count = Count + 1 ;

16 dX = l i n s o l v e ( Jacob ( X i n i t i a l ) ,−1∗Fun( X i n i t i a l ) ) ;

17 X new = X i n i t i a l + dX;

18 Error = norm(dX) /norm(X new) ;

19 X i n i t i a l = X new ;

20 f o r i =2:N

21 p s i ( i , 1 ) = X new( i −1 ,1) ;

22 end

23 %de l t a = norm(F( p s i ) ) ;

24

25 end

26

27 Root = X i n i t i a l ; %Stor ing the f i n a l va lue o f the root

28

29 end

code/NR Multi.m

Main.m

1 c l f , c l e a r , c l o s e a l l

2 c l e a r a l l

3

4 g l oba l N;

5 N=3; % num of o s c i l l a t o r s

6

7 g l oba l K;

8

9 K=9; % Coupling s t r ength .

10

11

12

13 g l oba l p s i ;

14

15 p s i=ze ro s (N, 1 ) ;

16

17 g l oba l Omega ;

18 %Omega=rand (N, 1 ) ; % Random Omegas

19

20 Omega = [ 1 ; 2 ; 3 ] ; % Prede f ined Omegas

21

22 % theta=rand (3 , 1 ) ;

23 % theta ( : , 1 ) = [ 1 ; 2 ; 3 ] ;

24 %

25 % fo r i =1:N

26 % ps i ( i , 1 )=theta ( i , 1 )−theta (1 , 1 ) ; %Ps i s constant

27 %

28 % end

29
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30 Root = ze ro s (50 ,2 ) ;

31 f o r l = 1:200

32 theta=ze ro s (N, 1 ) ;

33 theta ( : , 1 )=2∗pi ∗ rand (N, 1 ) ;

34 f o r i =1:N

35 f o r j =1:N

36 p s i ( i , j )=theta ( i , 1 )−theta ( j , 1 ) ; %Psi ( s ) randomised in each loop

37 end

38 end

39 [ root , count ] = NR Multi ( [ p s i ( 2 , 1 ) ; p s i ( 3 , 1 ) ] , 0 .00001 ,@F,@J) ;

40 %[ root , count ] = NR Multi ( [ 0 . 7 215 ; 1 . 6 8 21 ] , 0 .00001 ,@F,@J) ;

41 Root ( l , 1 )= mod( root (1 , 1 ) ,2∗ pi ) ;
42 Root ( l , 2 )= mod( root (2 , 1 ) ,2∗ pi ) ;
43 end

44 C = unique (Root , ’ rows ’ )

code/Main.m
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Appendix D

Critical values of k

K Stable Unstable Unstable Unstable Unstable Unstable

1 0.335 1.6

0.71 3.142

1.05 0.335 1.258 1.599 1.883

0.67 3.141 3.189 3.141

1.1 0.311 1.161 1.615 2.01

0.6379 3.148 3.232 3.136

1.3 0.2568 0.8742 1.667 2.266

0.5314 3.14 3.368 3.14

1.35 0.2513 0.8342 1.696 2.304

0.5103 3.142 3.396 3.145

1.36 0.2513 0.8263 1.676 2.304

0.5063 3.142 3.41 3.153

1.9 0.1676 0.5445 1.801 2.587

0.3566 3.136 3.605 3.142

2.7 0.1257 0.3794 1.885 2.762

0.2488 3.142 3.763 3.142

2.71 0.1243 0.3779 1.885 2.764 3.708

0.24 3.142 3.764 3.142 1.139

2.8 0.1257 0.3653 1.885 2.765 3.793 3.602

0.2398 3.142 3.776 3.162 1.309 0.9578

4.5 0.0837 0.2241 1.969 2.917 4.021 3.393

0.1486 3.142 3.921 3.142 1.738 0.4755
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